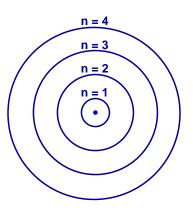

Atomic Structure


Line Spectrum

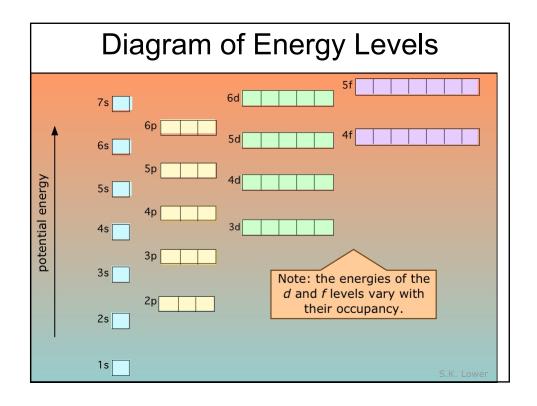
- Each element has its own unique line spectrum
- Each line is caused by an electron dropping from one energy level to another
- The color (frequency, wavelength, energy)
 of each line in the spectrum is determined
 by the difference in energy levels

Models of the Atom

Bohr's Model

- Electrons move around the nucleus in only certain allowed circular orbits
- Each orbit has a certain quantum number (energy number) associated with it.

- Energy levels could be calculated with a simple calculation using a constant determined by Rydberg
- Bohr's calculated values for the energy levels of Hydrogen matched experimental results
- Bohr was not able to explain why there should only be specific energy levels
- deBroglie proposed that maybe the electrons behaved like waves
- Davisson, Germer, & Thomson demonstrated this


However....

- Bohr's model only worked for the Hydrogen atom
- Schrödinger developed a new theory where the electrons are not in orbits but in probability regions known as orbitals

Orbitals

- An orbital is a mathematical function describing the standing wave that gives the probability of the electron manifesting itself at any given location in space.
- More commonly (and loosely) we use the word to describe the region of space occupied by an electron.

- Each kind of orbital is characterized by a set of quantum numbers n, l, and m.
- These relate, respectively, to the average distance of the electron from the nucleus, to the shape of the orbital, and to its orientation in space.

Aufbau Principle

- Each electron occupies the lowest energy orbital available
 - For example, all of the "2" orbits must be filled before electrons can go into the 3s orbital

Pauli Exclusion Principle

- A maximum of two electrons may occupy a single atomic orbital, BUT only if the electrons have opposite spins
 - The atomic orbital containing two electrons with opposite spins is written as ↑↓

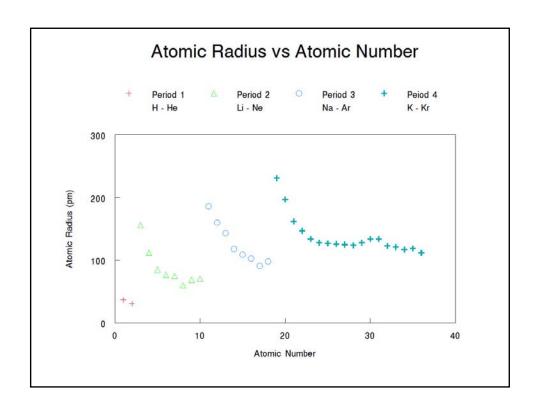
Hund's Rule

- Single electrons with the same spin must occupy each equal-energy sublevel before additional electrons (with opposite spins) can occupy the same orbitals
 - For example, the "p" orbital must be filled in this order

1.	2.	3.
\uparrow	\uparrow \uparrow	\uparrow \uparrow \uparrow
4.	5.	6.
$\uparrow\downarrow\uparrow\uparrow$	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow$	$\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$

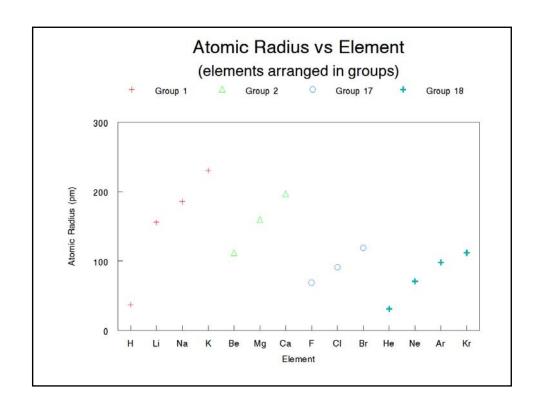
Examples

- H
 - 1s¹
- He
 - $-1s^{2}$
- Li
 - $-1s^22s^1$
- (
 - $-1s^22s^22p^2$


Noble Gas Notation

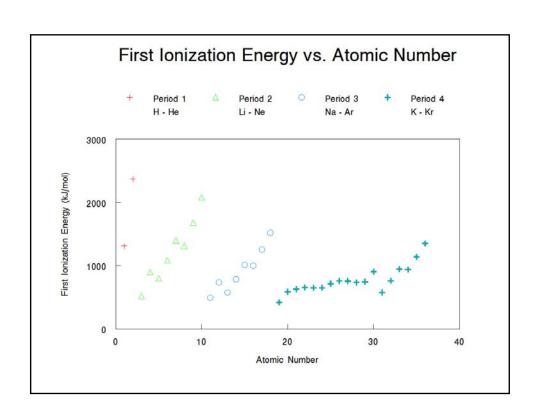
- Ne
 - $-1s^22s^22p^6$
- Na
 - $-1s^22s^22p^63s^1$
 - [Ne]3s1

Periodic Trends

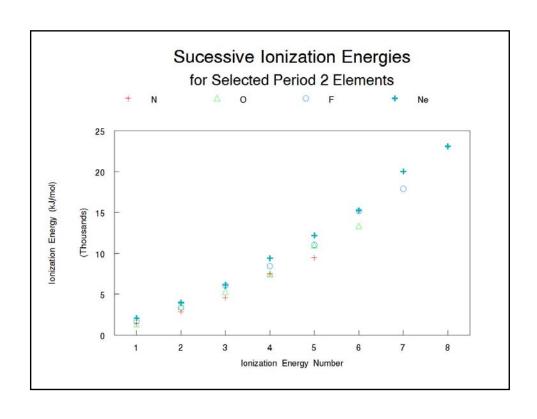

- Atomic radii
- Ionization energy
- Ionic radii
- Electronegativity

Trends in Atomic Radii

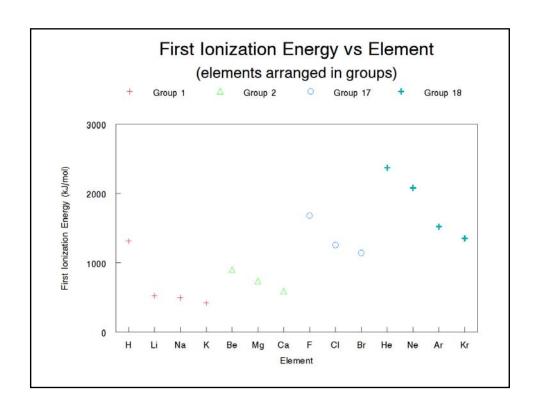
Periodic Trends in Atomic Radii


- The atomic radii generally decrease as you move across a period
 - Since each additional electron is added to the same principal energy level, the additional electrons are not shielded from the increasingly positive nucleus.
 - The increased nuclear charge pulls the valence electrons closer to the nucleus reducing the atomic radius.

Group Trends in Atomic Radii


- The atomic radii generally increase as you move down a group.
 - As you move down a group the outermost orbital increases in size shielding the valence electrons from the pull of the nucleus.

Trends in Ionization Energy


Periodic Trends in First Ionization Energies

- As you move across a period, the first ionization energy generally increases.
 - As you move across the row it becomes increasingly harder to remove a valence electron from the atom.
 - the increased nuclear charge of each successive element produces an increased hold on the valence electrons thereby increasing the ionization energies

Period Trends in Successive Ionization Energies

- The energy required for each successive ionization energy increases as you move across a period
 - The primary reason for this is that the increase in positive charge binds the electrons more strongly

Group Trends in Ionization Energies

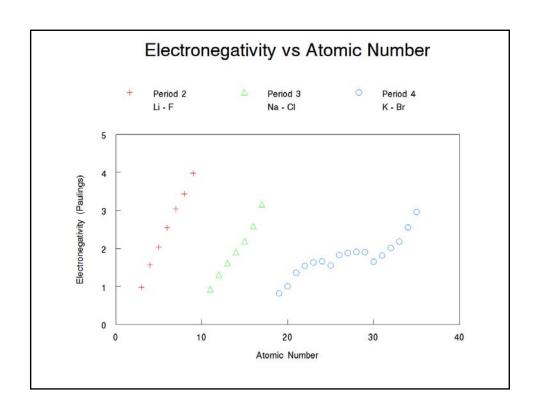
- The ionization energies decrease as you move down a group
 - The increasing atomic size pushes the valence electrons further away from the nucleus
 - Consequently it takes less energy to remove the electron because the strength of attraction is less

Trends in Ionic Radii

- Atoms can gain or lose one or more electrons to form ions
- When atoms lose electrons and form positively charged ions, they always become smaller
 - The lost electron will almost always be a valence electron, leaving an empty outer orbital resulting in a smaller radius
 - The electrostatic repulsion between the now fewer remaining electrons is smaller, allowing them to be pulled closer to the nucleus

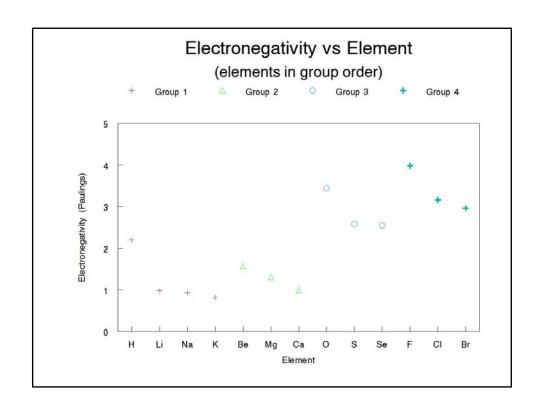
- When atoms gain electrons and form negatively charged ions, they always become larger
 - The addition of an electron to an atom increases the electrostatic repulsion between the atom's outer electrons, forcing them to move farther apart

Periodic Trends in Ionic Radii


- The size of positive ions decrease as you move left to right across a period
 - For example: Li⁺, Be²⁺, B³⁺, C⁴⁺
- The size of negative ions decrease as you move left to right across a period
 - For example: N³⁻, O²⁻, F⁻

Group Trends in Ionic Radii

- The ionic radii of all ions increases as you move down a group
 - As you move down a group, an ion's outer electrons are in higher principal energy levels, resulting in a gradual increase in ionic size


Trends in Electronegativity

- The electronegativity of an element indicates the relative ability of its atoms to attract electrons in a chemical bond
- The values are calculated based on a number of factors and expressed as a value of 3.98 or less
- Electronegativity is measured in arbitrary units called Paulings

Periodic Trends in Electronegativity

 Electronegativity generally increases as you move left-to-right across a period

Group Trends in Electronegativity

 Electronegativity generally decreases as you move down a group

Another Note about Electronegativity

- Because electronegativity is a measure of the ability of an atom to attract electrons, it can be used to predict the type of bond that will form between two atoms
- The type of bond can be predicted by the difference in electronegativity between the two elements

Electronegativity Differences and Predicted Bond Character

Electronegativity Difference	Predicted Bond Type	Example
0 – 0.4	Non-polar covalent	O ₂ (3.44-3.44=0)
0.4 – 1.0	Moderately polar covalent	SCI ₂ (3.16-2.58=0.58)
1.0 – 2.0	Very polar covalent	CaS (2.58-1.00=1.58)
≥2.0	lonic	KCI (3.16-0.82=2.34)